
Third Semester B.E. Degree Examination, Aug./Sept. 2020 Mechanics of Materials

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for deformation of tapering bar having circular cross-section.
(08 Marks)
b. Define:
i) True stress
ii) Rigidity Modulus
iii) Poisson's Ratio iv) Resilience.
(04 Marks)
c. A steel tie rod 50 mm in diameter and 5 m long is subjected to a pull of 100 kN . To what length the bar should be bored centrally so that the total extension will increase by 20% under the same pull, the bore being 25 mm diameter. Take: $\mathrm{E}=200 \mathrm{GPa}$.
(08 Marks)

OR

2 a. Establish the relationship between modulus of elasticity and bulk modulus in case of a cube subjected to three mutually perpendicular like tensile stresses of equal intensity ' P '.
(10 Marks)
b. The composite bar shown in Fig.Q.2(b) is 0.2 mm short of distance between the rigid support at room temperature. What is the maximum temperature rise which will not produce stresses in the bar? Find the stresses induced when temperature rise is $40^{\circ} \mathrm{C}$.
Given: $\alpha_{s}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C} ; \mathrm{E}_{\mathrm{s}}=210 \mathrm{GPa} ; \mathrm{A}_{\mathrm{s}}: \mathrm{A}_{\mathrm{c}}=5: 4 ; \alpha_{\mathrm{c}}=17.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} ; \mathrm{E}_{\mathrm{c}}=120 \mathrm{GPa}$.
(10 Marks)

Fig.Q.2(b)

Module-2

3 a. Derive an expression for normal and shear stress on an inclined plane of member. ($\mathbf{0 8}$ Marks)
b. An element with the stresses acting on it, is as shown in Fig.Q3(b) by Mohr's circle method.

Determine:
i) Normal and shear stress acting on a plane whose normal is at an angle of 110° with respect to x -axis.
ii) Principal stresses and its locations.
iii) Maximum shear stresses and its location.
(12 Marks)

Fig.Q.3(b)

1 of 2

4 a. Derive the expressions for circumferential and radial stresses in the wall of thick cylinder (Lame's equation).
(10 Marks)
b. A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid at a pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. Find the maximum and minimum hoop stress across the cross section of the cylinder. Also sketch the radial pressure and hoop stress distribution across the section.
(10 Marks)

Module-3

5 a. Define point of contraflexure. Draw the SFD and BMD for overhanging beam shown in below Fig.Q.5(a) and locate the point of centraflexure.
(15 Marks)

Fig.Q.5(a)
b. Explain the fire types of beam.
(05 Marks)

OR

6 a. An I-section beam $350 \mathrm{~mm} \times 200 \mathrm{~mm}$ has a web thickness of 12.5 mm and a flange thickness of 25 mm . It carries a shearing force of 200 kN at a section. Sketch the shear stress distribution across the section.
b. Derive an expression for differential equation for deflection curve.

Module-4

7 a. Derive the relation for a circular solid shaft when subjected to torsion as given by $\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau}{\mathrm{R}}=\frac{\mathrm{G} \theta}{\ell}$ and state the assumptions.
(10 Marks)
b. A hollow diameter circular shaft has to transmit 60 kW at 210 rpm such that the maximum shear stress does not exceed $60 \mathrm{MN} / \mathrm{m}^{2}$, If the ratio of internal diameter to external diameter equal to $3 / 4$ and the value of $\mathrm{G}=84 \mathrm{GPa}$, find the dimensions of the shaft and angle of twist in a length of 3 m .
(10 Marks)

OR

8 a. Derive an expression for Euler's crippling load for a column when both of its ends are hinged or pinned.
(10 Marks)
b. Derive an expression for Euler's crippling load for a column when one of its ends are hinged or pinned.
(10 Marks)

Module-5

9 a. Explain Rankin's theory and Guest's theory.
(08 Marks)
b. Find the deflection at the centre of simply supported beam of length ' l ' carrying UDL of 'W' per unit length over its entire length using castigliano's theorem.
(12 Marks)

OR

10 a. Derive an expression for strain energy stored in an elastic bar when subjected to torque and bending moment.
(10 Marks)
b. Determine the diameter of a bolt which is subjected to an axial pull of 9 kN together with a transverse shear force of 4.5 kN using maximum principal stress theory. Given: The elastic limit in tension $=225 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{FOS}=3$ and Poisson's Ratio $=0.3$.
(10 Marks)

